
Representations of knowledge – how the brain brings to mind 

 

Human experience is defined by our marked ability to learn about the world and to make 

meaningful interactions with the things around us. As we grow and develop, we learn that a 

dog is a friendly animal that is similar yet distinct from a cat. That a tiger – although a cat – is 

dangerous and to be feared; that it is expected to appear amongst trees in the jungle. We 

somehow master the art of using a knife, whose function can change multiple times during 

as simple a task of making a sandwich as we cut bread, slice meat and scoop and spread 

butter. All of these are examples of knowledge acquired through life, and this must be housed 

in some way within the neurocognitive processes of our brain. Questions on the nature of 

knowledge go back as far as history can track, and the conversation spans multiple research 

fields from philosophy and psychology to cognitive science, neuroscience and computer 

intelligence. In this essay, I will present an integrative account of the research into human 

knowledge acquisition, discussing various ideas and models from a range of disciplines. What 

insights can we get from philosophical theories of knowledge, and on the other end, what 

evidence do we have for neural mechanisms of knowledge? The question of knowledge itself 

is a vast topic that is impossible to cover completely in one coherent review, but the aim of 

this work is to provide an overview and introduction to the key ideas spanning across different 

fields’ exploration of this puzzling topic. 

 

What is knowledge? What do we mean by a representation? 

 

Firstly, we must address what is meant by knowledge. If we take insights from epistemology, 

we observe that the ongoing debate regarding the definition of knowledge highlights how 

difficult a task it is to fully capture its meaning. Although classically defined by Plato as being 

something that is justified, true and believed, many struggle to fully accept this definition. 

Much later, Ludwig Wittgenstein suggested that knowledge may be a case of family 

resemblance; it is a means of clustering concepts together so that we can be pointed towards 

relevant features. But when we say that we know something, exactly what type of knowledge 

are we talking about? One can know what something is and how to use it, or, one can know 

someone else. Knowledge can change given a context. Although often discussed in terms of 



categorisation behaviour, especially in the computer intelligence literature, knowledge isn’t 

merely just attaching a label to a word. Humans are capable of expansive abstract knowledge 

that generalises across domains and examples. We have a grasp of concepts such as the fact 

that the phrase “bread and butter” just feels more correct than “butter and bread” (Morgan 

& Levy, 2016). Clearly, even defining knowledge is tricky, thus, for the purposes of this 

argument I point instead towards typical definitions of knowledge as it pertains to memory 

of useful information.  

 

Let us consider here knowledge as something that can be accessed from our long term 

memory and employed for a specific function. This leads naturally to the branch of memory 

called explicit semantic memory. It concerns knowledge of general facts and information 

about the world, resulting in a generalisable understanding of what things mean. This lacks 

specificity in time or place (Tulving, 1972) in contrast to episodic memory of experiences and 

autobiographical events, an equally interesting type of knowledge that will not be discussed 

here. Indeed, semantic cognition refers to our ability to use, manipulate and generalise 

knowledge as we experience our life and environment, eloquently described by Lambon 

Ralph and colleagues as the thing that “transforms the sensory cacophony into a symphony 

of meaning” (Lambon Ralph et al., 2016). This serves to support and enable our behaviour, 

both verbal and non-verbal - although much research is in the lexical domain – and enriches 

our human experience so much so that the neurodegenerative loss of such knowledge in 

certain types of dementia can severely impact upon one’s quality of life. By narrowing the 

discussion of knowledge and its representation to semantic knowledge and cognition, we 

enable a thorough transdisciplinary discussion of this age-old topic. 

 

Knowledge as concepts, representations and relations – from philosophy to psychology 

 

In order to know something, the mind must be able to house the content. The information 

must be transduced from physical, sensory or experiential input into abstract or long-term 

knowledge. Thus emerges the idea of a mental representation which, although commonly 

used in cognitive science, is not universally accepted (see Rowlands (2017), for a review of 

this argument). Representational theory of mind, which dates back to Aristotle, describes how 

cognitive states and processes are constituted by the occurrence, transformation and storage 



in the mind and brain of information-bearing symbols or structures called representations 

(Pitt, 2020). In this way, representational states can be activated and used when we 

encounter certain stimuli or environmental cues. For example, the perception of a dog 

involves the observation of many types of input from the animal’s motion and the textures of 

its fur to the sound of its bark. All of this sensory input must be interpreted and transduced 

by the brain, and represented in a cognitive or neural mechanism. Indeed, this conceptual 

representation houses myriad semantic information such as what a dog is, how it relates to 

other animals (for example, that it is similar to a cat in that it is expected to be a pet) and 

perhaps even emotionally valent memories of one’s own dog. Thus, a mental representation 

is not as simple as just the fact that the perceived object is attached to the verbal label “dog”. 

The representation houses a rich semantic knowledge for the concept that extends beyond 

the basic functional output of attaching the label to the referent. 

 

What exactly are concepts, and how are they handled by the brain? This attempt at defining 

a concept and discussing how we represent them requires the introduction of some theories 

for knowledge representation, stemming from the philosophical debate and psychological 

evidence. The classical theory of concepts relies on the idea of a definitional structure 

whereby concept C is composed of simpler concepts that express C’s necessary and sufficient 

conditions (Margolis & Laurence, 2019). For example, the concept triangle is represented by 

its definition of having three edges and three vertices. Despite all successive theories 

stemming from the definition-based classical theory, it falls short in many ways. Mainly, most 

attempts to find successful definitions for a concept fail and it does not account for numerous 

empirical findings from psychological experiments.  

 

One such finding is the highly-reproduced typicality effect. This reveals that certain members 

of a category are seen to be more representative of that category than others. For example, 

reaction times are faster for responding ‘True’ to the sentence ‘A robin is a bird’ than to the 

sentence ‘A chicken is a bird’, suggesting that a robin is seen as more typical for the concept 

of bird (McCloskey & Glucksberg, 1978). Although the classical theory is not exactly 

inconsistent with such findings, it simply does nothing for explaining them. Instead, Eleanor 

Rosch’s prototype theory adds some explanatory power to our idea of a concept by taking a 

probabilistic rather than definitional approach (Eleanor Rosch & Mervis, 1975).  



 

Rosch and Mervis propose that members of a category share family resemblance – harking 

back to Wittgenstein’s philosophical discourse of the same (Wittgenstein, 1958). In their 

psychological experiment, participants were asked to list all attributes they could for 20 

examples of 6 categories across a range of typical examples. For example, the category 

‘Furniture’ with the exemplar ‘Chair’ being the most typical and ‘Telephone’ the least. This 

experiment showed that there were actually very few properties that were shared by all 

instances of the category, which would have been expected by the definitional approach of 

classical theory. Instead, more typical members shared many attributes with more members 

of the group and this degree of feature similarity could be quantified in what the authors 

called a family resemblance score. In other words, when family resemblance was high, so too 

was typicality rating. In this way, a prototype for a category can be found which is the item 

that has the highest overall family resemblance to other members of the category, or is simply 

the statistically average member of the category. Thus, Rosch’s prototype theory argues that 

a mental prototype is formed that represents the average picture of a concept, even if such 

an average has never been experienced. This facilitates generalisation to other members of a 

category as the mind represents the concept in a probabilistic feature-based manner. Note 

that the prototype model inherently fails to capture the spread of concepts’ exemplars, which 

can be highly-variable, because of its reliance on finding an average prototype. An alternate 

theory to this is the exemplar approach, the power of which is illustrated by the experiments 

of Storms et al. (2000). It was found that the similarity between instances of a category was 

a better predictor of categorisation performance than Rosch and Mervis’ (1975) family 

resemblance. This provides conflicting empirical evidence to the prototype theory, instead 

suggesting that concepts are represented by stored examples that are all linked to the 

category name. 

 

The feature-based approach of Rosch’s prototype model is nonetheless attractive, and is 

further formalised in Moss, Tyler and Taylor’s conceptual structure account (Taylor et al., 

2007). The focus here is on the internal structure of a concept, which comprises its features 

that have been shown to have the most prominent effects. Of particular interest are the 

relationships between features and the degree of correlation between them. Using co-

occurrence of semantic properties as a key relation of concepts is interesting, as it links to 



evidence from infant statistical learning (Saffran & Kirkham, 2018) and computational 

distributional semantics (Bruni et al., 2014) whereby the statistical regularities of the 

environment are learned by an agent so as to glean organising structure, relationships and 

therefore meaning from the world. Relational co-occurrence structure of this sort has also 

been shown in the visual domain, suggesting that it is not a route to meaning in language 

alone (Sadeghi et al., 2015). This idea of representing a concept by a type of similarity 

comparison accounts much better for observed typicality effects, but falls short when we 

extend the idea of a concept to more abstract judgements that require reflection such as goal-

directed ad-hoc concepts e.g. “things to bring to the beach”. These often lack clear 

prototypes, and instances of the concept can exhibit widely different characteristics which 

makes feature comparison very difficult.  

 

Murphy & Medin (1985) illustrate this idea for the concept of ‘drunken actions’, describing 

how, even in the absence of underlying feature similarity, people can coherently implicate 

their knowledge of intoxication to enable classification of a drunk individual based on their 

behaviour. They argue that concepts must fit an underlying theory about the world. This 

‘theory-theory’ of concepts describes classification as being similar to scientific theorising in 

which causal relations are particularly important for making judgements about category 

membership (Margolis & Laurence, 2019). It is well-suited for explaining the more abstract or 

reflective types of categorisation that the prototype theory fails to explain, but it is still flawed 

in that it has difficulty explaining how different people come to represent concepts in such 

similar ways, despite hugely different experiential input over time. Furthermore, the theory-

theory does little for describing the influences of sensory information on our concepts, an 

important consideration that is lacking from any of the theories presented above.  

 

Grounding concepts in our senses – embodied knowledge 

 

Traditional approaches to information processing actually assume that the representation of 

knowledge is in the form of an amodal, internal symbol system that lies independent from 

the brain’s modal sensory regions. There have always been arguments in opposition to this 

amodal view (Markie, 2017). While the rationalist views of Plato and more modern 

philosophers such as Descartes, Leibnitz and Kant argue against concepts that are grounded 



in sensory experience, a complete lack of consideration for sensory components seems 

unfounded. The idea that modal inputs are important for the mind’s representations of 

knowledge goes back once again to ancient philosophers such as Aristotle. More recent 

empiricists including Locke and Hume argue that all concepts should be derived from sensory 

experience. The importance of perception is stated in David Hume’s principle of association, 

as he believed that all knowledge is derived from experience and must be analysable in terms 

of perceptual content (Hume, 2003). His views went so far as to refute the existence of any 

innate ideas or theories. More recently, Lawrence Barsalou presents influential scientific 

arguments for knowledge being grounded in experience. His grounded cognition framework 

wholly rejects the need for amodal symbols and instead argues for an embodied view of 

concepts in which all knowledge comes from some form of sensory input (Barsalou, 2008).  

 

Grounded cognition states that it is very unlikely that the brain contains the types of amodal 

symbols that standard theories of cognition often assume. It places an importance on the idea 

of simulation, the re-enactment of the perceptual, motor and introspective states that are 

acquired during experience and subsequently re-activated when we need to draw upon our 

knowledge. In this way, all knowledge is thought to have a basis in some sensory component. 

There is plenty of evidence that sensory and motor systems contribute to conceptual 

representation. For example, words such as “kick” or “lick” will result in motor cortex 

activation in the same somatotopic areas that would be activated when executing the action 

(Hauk et al., 2004). For the case of conceptual knowledge, Barsalou (2008) argues that there 

is plentiful empirical evidence corroborating the idea of simulation for conceptual processing. 

Referencing behavioural, lesion and neuroimaging studies he illustrates that the brain’s 

perceptual areas in posterior regions are involved in conceptual processing and therefore 

simulation must be playing a role (Barsalou, 2008). However, it is arguable that the evidence 

provided doesn’t necessarily preclude the involvement of what traditional approaches would 

call a symbol.  

 

Indeed, there is undeniable evidence that perceptual brain regions are activated when 

recollecting and retrieving perceptual knowledge (e.g. Kellenbach et al., 2001) but that is not 

to say an entirely grounded mental state, as described by Barsalou, is being simulated upon 

retrieval. It is well-established that the early visual cortex receives top-down influence from 



frontal regions that facilitates object recognition (Bar et al., 2006) and top-down feedback 

provides a means of shaping attention towards task-relevant stimuli (Vetter et al., 2014). This 

is an inherently different type of state than would be activated during purely bottom-up 

perceptual experience, and begs the question: if top-down input from abstract attention-

guiding regions is so important for modal regions’ activation patterns during conceptual 

processing, then surely a completely grounded view is difficult to support? At some level, this 

signal must be considered amodal even if it is not the entirely symbolic representation 

favoured by rationalists. Furthermore, there is growing neural evidence for the phenomenon 

of replay within the hippocampus during which re-activation of neural sequences that were 

active in behaviour are thought to support consolidation, memory formation and retrieval 

(Pfeiffer, 2020). This replay is consistent with idea of simulation from grounded cognition but, 

if anything, it places the phenomenon in the abstract, amodal region of the hippocampus and 

not sensory cortex. Nonetheless, the involvement of modality-specific sensory experience for 

forming conceptual representations described by grounded cognition is important to 

consider. Although the details of this theory are often debated and questioned, I would argue 

that a completely symbolic view is equally unlikely; the first cortical port-of-call for any 

knowledge-forming experience is the sensory regions, and some element of grounded 

cognition must be present to build a representation. 

 

Where is semantic knowledge represented in the brain? – Discussions from neuroscience 

 

Any cognitive model or theory must have a neural basis. There are proven regions that are 

involved in the process of knowledge representation (Kiefer & Pulvermüller, 2012) as 

introduced in our discussion of grounded cognition above. Results from clinical lesion studies, 

neuroimaging and neuropsychology all give insight into the neural underpinnings of the 

theories for knowledge representation put forward by philosophers and behavioural 

psychologists. There are known category-selective regions in ventral temporal cortex 

(Downing et al., 2006; Kanwisher et al., 1997; Tanaka, 1996) and there is evidence that the 

ventral visual stream houses diffuse networks of semantic categories (Huth et al., 2012). 

However, insights from cases in which high-level conceptual processing goes wrong provide 

compelling evidence for an integrated site of semantic knowledge in the temporal poles. 

 



Semantic dementia (SD) is a neurodegenerative disease in which patients exhibit a 

behavioural deficit in the ability to access conceptual knowledge despite otherwise preserved 

cognitive function. For example, an SD patient may fail to retrieve the word ‘dog’ when shown 

an image of a dog, and they may not even have an understanding of what it is they are being 

shown. This cognitive decline is accompanied by extremely specific atrophy of the anterior 

temporal lobe (ATL), which worsens progressively with age and disease progress (Czarnecki 

et al., 2008). Imaging of SD patients versus age-matched healthy controls shows a reliable 

bilateral atrophy of the temporal pole, with more pronounced degeneration in the left 

hemisphere (Mummery et al., 2000). Moreover, the degree of semantic memory impairment 

in patient groups correlates with the extent of atrophy in the left ATL, proving a clear link 

between pathological and behavioural disease profile. This finding is highly reliable and the 

pathology is very predictable, with patients showing deficits in accessing meaning across all 

conceptual domains rather than specific categorical deficits (Hodges & Patterson, 2007). 

Lesion studies implicating the ATL in conceptual processing are corroborated by transcranial 

magnetic stimulation (TMS) evidence in which inhibition of the ATL leads to an SD-like 

behavioural profile, with categorisation deficits for both abstract and concrete concepts 

(Pobric et al., 2009). As such, the temporal pole is widely thought to be an important site of 

conceptual knowledge processing.  

 

It is interesting to note that the functional loss of the ATL described above affects both 

abstract and concrete concepts. Although sometimes thought to be the sole site of abstract 

knowledge representation, emerging evidence instead suggests that the ATL acts as a 

convergence zone integrating modality-specific inputs to retrieve and recollect concepts 

(Damasio, 1989). In this way, it can be thought of in terms of Lambon Ralph and colleagues’ 

‘hub-and-spoke’ theory of semantic representation. According to this model, the ATL acts as 

a modality-invariant hub to which sensory, modality-specific ‘spokes’ communicate 

bidirectionally through white matter connections (Lambon Ralph et al., 2016). The theory 

accounts for how coherent and generalisable concepts are built in the mind from sensory 

experience and how the learned features and concepts are then mapped to broader semantic 

knowledge making it a more a unifying theory that aligns with Barsalou’s grounded cognition 

as well as symbolic ideas. If we refer pack to Rosch’s prototype theory, the features of a 

concept would be learned and represented in the sensory spokes of the cortex and the ATL 



then acts as the calculator of typicality or family resemblance. The grounded sensory 

representations would occupy the spokes, which are then processed by a high-level amodal 

hub. Functional imaging reveals that, alongside ATL atrophy, there is a reduction in hub-spoke 

functional connectivity in SD patients, providing further neurophysiological bases for this 

unifying model of semantic cognition (Guo et al., 2013).  

 

Although the importance of sensory experience seems obvious for typically developing 

semantic knowledge, recent evidence suggests there is an alternate means of acquiring 

knowledge representations in the absence of sensory input. By comparing congenitally blind 

individuals to healthy controls using resting-state fMRI and behavioural data, it was shown 

that the two groups possess a significantly similar representational space for object-colour 

knowledge e.g., that a cherry is red, and this is more similar to apples which are also red than 

to oranges (Wang et al., 2020). Despite this, there were subtle differences in the neural 

underpinnings of the two groups’ semantic representations. While both exhibited activation 

of the typical semantic processing areas including ATL, the congenitally blind individuals 

lacked ventral occipitotemporal activation that was present in the sighted group. The 

functional connectivity of visual nodes was more tightly bound to the ATL in the sighted versus 

patient group. The authors conclude that there are two distinct types of knowledge 

representation present in the human brain: the first emerges from sensory-derived codes and 

the second from unembodied language and cognitively derived codes. They propose that, 

instead of ATL being the pre-defined location for representing abstract concepts, it is instead 

the abstractedness of how knowledge was acquired that determines whether it is coded in 

the ATL. To elaborate, the knowledge of object-colour associations was learned by both 

groups using abstract, lexical experience and thus resulted in ATL activation during a 

discrimination task. This learned representation was remarkably similar across participants, 

regardless of whether they had been blind from birth. However, in the sighted group, this 

abstract representation was accompanied by a locus of activation in the visual cortex – an 

alternate means of knowledge representation that results from visual experience. So, if 

knowledge was learned in an abstract way then it is housed in an abstract region (ATL), and if 

it was learned with a sensory component it would also be represented in sensory cortex. This 

is an interesting finding that raises many questions about how we view typical routes to 

knowledge representation, and the results are especially concerning for theories of grounded 



cognition. Indeed, the ventral occipitotemporal activation reflects what Barsalou would argue 

is simulation, but it is difficult to reconcile the strikingly similar behavioural and 

representational profiles of the congenitally blind individuals who had never received 

grounded visual input.   

 

Zooming in – knowledge at the systems and computational level 

 

Human lesion and imaging studies provide invaluable evidence for functional, modular and 

anatomical accounts of cognition in the brain. The results presented above point clearly to 

posterior sensory regions and temporal association cortices (ATL) as the sites for semantic 

knowledge processing. However, the strengths of these macro-level methods are 

accompanied by weaknesses in their ability to give detailed mechanistic evidence for the 

implementation of cognitive processes. Thus, we turn to computational and cellular systems 

neuroscience to explore this more zoomed-in level of representation.   

 

The representations of concepts in specialised regions must still have a micro-scale 

description at the neural level. Traditional approaches often considered the neuron itself as 

the basic unit of information, assuming that a concept is coded within one node of an entire 

neural network (Barlow, 1972). This idea was successfully modelled in computational 

semantic networks which represent meaningful structure between concepts in a hierarchical 

fashion (Collins & Quillian, 1969; Collins & Loftus, 1975). The connection of nodes within the 

semantic network explicitly models knowledge of a concept in a symbolic manner, with each 

node having an associated label that specifies the knowledge content. At different levels of 

the network, properties will be inherited in such a way that concepts are structured in a 

hierarchical tree. This localist approach to semantic modelling was influential, but has proven 

to be quite restrictive. Significant progress in semantic modelling was made with a move 

towards distributed theories where concepts are coded by multiple representational units, 

and arise from more widespread activation patterns.  

 

A key distributional framework was proposed by McClelland and Rumelhart called Parallel 

Distributed Processing (PDP) (McClelland & Rumelhart, 1986).  This spawned the field of 

connectionism, which went on to influence modern artificial neural networks and machine 



intelligence. Connectionism progressed computational models of knowledge from the 

seminal semantic networks and switched the focus from the neuron itself as the unit of 

information, instead considering the wider pattern of synaptic connection weights. As 

famously summarised by Hebbian theory, “neurons that fire together wire together” meaning 

that information can be stored from increased connection strength due to correlated 

activation (Hebb, 2005). In this way, cognitive activities emerge from interactions between 

large numbers of processing units in a distributed process across many brain regions. 

Knowledge is stored in the activity patterns of participating neurons within a section, or layer, 

of a network (Caramazza et al., 1990; Devlin et al., 1998; James L. McClelland & Rogers, 2003; 

Tyler & Moss, 2001). In PDP framework, learning of concepts necessarily arises through 

experience. Backpropagation of prediction error shapes stored representations by comparing 

the expected result to that which actually occurs, a method that is known to take place in the 

neural circuitry of the brain (Watabe-Uchida et al., 2017). These connectionist networks are 

sensitive to co-occurrence statistics of features, the same statistical information that is 

theorised to be important for forming internal structures of concepts by Taylor et al. (2007) 

in their conceptual structure account.  

 

Computational theories use terminology borrowed from cellular neuroscience, and artificial 

neural networks describe their processing units as neurons. However, modelling alone does 

not provide definitive evidence for a distributed mechanism of concept representation or 

memory in the brain. With continued technological advancements in cellular systems level 

neuroscience such as the advent of opto and chemogenetics, it has been made clear that 

sparse ensembles of cells encode specific memories, and indeed that memory resides in the 

stable connectivity patterns between these distributed cells (Harel & Ryan, 2020). This makes 

exciting connections between computational insights and network neuroscience.  It is well-

established that neural populations can encode complex probabilistic information (Ma et al., 

2006), and network-level coding units within the hippocampus termed neural cliques have 

been shown to have powerful abilities to abstract and generalise representations of external 

events, useful for cognitive functions (Lin et al., 2006). Powerful calcium imaging techniques 

in drosophila have revealed that olfactory associative memories emerge from a distributed 

synaptic memory code, implicating synaptic boutons as the important modifiable units for 

information storage (Bilz et al., 2020). This is an attractive result for thinking about cellular 



implementations of weight updates modelled by connectionist networks, suggesting that the 

site of weight changes is at a sub-synaptic scale. This reduces reliance on the idea that new 

connections must emerge from neurogenesis, instead the shapes of dendritic trees and 

arborisation patterns may house the most fundamental unit of the activation patterns that 

facilitate knowledge representation (Frank et al., 2018). A true implementation of 

backpropagation as it appears in connectionist networks is unlikely in the brain. Instead, there 

is some argument for the role of excitatory and inhibitory balance at the dendritic tree being 

an important regulator of synaptic weight connections (Iascone et al., 2020). The more 

obvious link of prediction error updates is in terms of dopamine prediction errors for learning 

(Holroyd & Coles, 2002; Keiflin & Janak, 2015). Although many questions remain open, the 

combinatory power of computational and cellular neuroscience for addressing this level of 

understanding mechanisms for knowledge representation is becoming increasingly exciting.  

 

Engineering knowledge in artificial intelligence 

 

Studies of human knowledge representation are inextricably linked to those in computer 

science. Computational models are of course widely used to study mechanisms of knowledge 

representation in the mind, but understanding and engineering knowledge into such systems 

is an endeavour in itself. In fact, a Google search for “knowledge representation” doesn’t give 

results regarding the brain, but instead brings up entries on artificial intelligence (AI). Indeed, 

artificial neural networks are heralded in modern machine learning, and deep neural 

networks have been disruptive in the field of computer vision (Krizhevsky et al., 2012). Not 

only this, but these networks are increasingly used in neuroscience to study knowledge 

representations such as those for objects, or in reward-based reinforcement learning 

(Richards et al., 2019). Although biologically-inspired, these networks and their exact 

methods of learning do receive heavy criticism regarding biological plausibility (Lillicrap et al., 

2020) and one should struggle to make an exact comparison between the artificial networks 

and the brain.  

 

Furthermore, claims that these networks are achieving human-level behavioural performance 

should be called into question. In psychology, concepts are traditionally explored through 

categorisation (e.g. E. Rosch, 1975) and engineers in AI often sing the praises of neural 



networks because of superior performance in categorisation tasks (He et al., 2015). However, 

there seems to be an under-appreciated oversight in the field. Often those engaged in the AI 

scientific community simply accept that knowledge has been acquired because the artificial 

network is extremely successful at attaching labels to visual or textual stimuli. But this fails to 

account for the complex semantic concepts that are housed in the human brain. Yes, part of 

knowing that a tree is a tree is naming it and categorising it, but we cannot claim that an AI 

actually knows what this means in a wider semantic context. Furthermore, most models are 

trained in only one modality meaning they can lack grounding of the concept in another 

(Baroni, 2016). Some highly-cited papers do give further insight into this issue, but I would 

still argue that true conceptual meaning is missing from state-of-the-art AI. Looking at studies 

that explore the representational space of these networks, i.e. how similar and dissimilar does 

it represent objects, there are striking similarities to representations found in the human 

brain from neuroimaging (Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). Further 

arguments for the representation of complex concepts in artificial networks comes from 

linguistic models. Such networks have been shown to be able to perform word analogy 

problems, for example that ‘Queen’ minus ‘Woman’ plus ‘Man’ equals ‘King’ (Mikolov et al., 

2013). It’s enticing to refer to ground-breaking findings such as these when making claims for 

robust artificial knowledge representations but once again it seems far-fetched to argue that 

there truly is meaning in these networks. Of course, relations and co-occurrence patterns are 

thought to be important for human conceptual processing as discussed through the prototype 

and exemplar approaches above, but human knowledge representation goes beyond this. 

Even the authors of the latest and greatest in AI, the language model GPT-3, warn against 

interpreting it as the beginnings of artificial general intelligence (Floridi & Chiriatti, 2020). The 

cutting-edge in machine intelligence is impressive, but the most hyped advances are hugely 

reliant on labelling, categorisation and shallow representations of meaning that cannot be 

compared to the vast abstract semantic capabilities of human cognition.  

 

Conclusion 

 

The question of knowledge representation is undeniably stimulating. A variety of thinkers 

from philosophy to computer science all strive to elucidate the mechanisms of how we come 

to know, but much remains to be answered. In this essay, I have attempted to give an 



integrated, transdisciplinary overview of the topic describing theories of concepts, macro-

level evidence from neuropsychology and neuroscience and a network discussion of how 

representations might be implemented on a neural level. It seems that knowledge emerges 

necessarily from grounded experience with the world, while its storage in the brain could be 

in higher amodal centres. Knowledge is distributed and flexible, and no one theory can fully 

account for how it is acquired. In my own understanding of knowledge representation I find 

it useful to draw upon elements of each theory discussed here, with the unifying hub-and-

spoke model being especially appealing. Finally, although computational accounts of 

knowledge representations have taught us a lot and are progressing rapidly, true artificial 

intelligence is still a long way off and building more meaningful semantics into these networks 

is a worthwhile endeavour. The accounts presented here go much deeper and each offers a 

wealth of insight. However, given the historical speculation regarding this topic I suspect that 

we will continue to remain ignorant to the complete workings of knowledge for many years 

to come.  
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