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Abstract

Deep convolutional neural networks continue to prevail
at the forefront of innovation in computer vision. New,
contrastive methods of self-supervised learning are less-
ening our reliance on curated datasets and hold potential
for more robust and generalisable learning. While much
of the focus in computer vision is on classification accu-
racy and if a network is performing well, it is equally useful
to understand how these models are learning. By probing
the representational underpinnings of DNN behaviour, we
can better understand the foundations of success in com-
puter vision. Here, we present an application of repre-
sentational similarity analysis to investigate the patterns of
activations within the self-supervised network Contrastive
Multiview Coding (CMC). We illustrate that, despite en-
abling high ImageNet classification accuracy, purely per-
ceptual tasks prevent CMC from capturing more high-level
semantic structure that would easily be learned by a hu-
man. Building from this, we present SemanticCMC. Trained
on a naturalistic movie dataset with meaningful tempo-
ral co-occurrence patterns, we illustrate that this alternate
task improves coding of concept semantics despite attenu-
ated classification accuracy. This preliminary analysis on a
single self-supervised network highlights that reliance on
object-level decoding does not always indicate meaning-
ful concepts have been captured. By investigating the na-
ture of the content learned by DNNs, we can improve our
understanding of their similarities and differences to hu-
man vision and progress towards naturalistic visual ma-
chine learning in the real world.

1. Introduction

Supervised DNNs excel at classification tasks, applica-
ble to a wide range of problems in engineering, science and
technology. However, the nature of their training and the de-
pendence of the current state-of-the-art on highly-curated,

labelled datasets limits the potential of modern computer
vision to emulate learning in the real world. There is cur-
rently a failure in the computer vision community to look
into the why and how of these networks’ learning mecha-
nisms - something which is imperative if we are to progress
towards more robust and generalisable machine learning.

Models that learn via self-supervision are exciting can-
didates for more naturalistic computer vision, perhaps ca-
pable of intelligent learning in the quotidian environment
or as better models of human vision. Indeed, early insights
suggest that such learning curricula can model neural and
behavioural responses well and are even useful for form-
ing hypotheses about the brain’s own learning [18]. Unlike
DNNs, the human visual experience is not solely reliant
on statistical regularities of local image features [1], but
accounts for more global structure between objects in the
world. This helps to build semantic meaning into founda-
tional concepts that are learned through vision; so much of
our early experience as a pre-verbal infant involves learning
what things are from diverse patterns in our visual inputs.
The current literature fails to fully account for the presence
or absence of this global, high-level information in com-
puter vision models.

Here, we take a step back from performance metrics and
employ techniques from cognitive science to explore the na-
ture of the representations learned by a self-supervised net-
work [14]. Roads and Love show in [13] that when the rela-
tional structure of concepts is accurately captured across a
range of modalities, their idiosyncratic signals within each
system can be leveraged to align the concepts and form a
more integrated, distributional account of their meaning;
one cannot fully understand what something is unless one
understands how it relates to other things. By investigat-
ing and building this level of understanding in computer
vision models, perhaps a more complete representation of
concepts can be learned.

Echoing this emphasis on relational structure, there is
evidence that humans and DNNs can learn semantics from
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the typical context in which an object is found [11]. Text-
based distributional semantic models (DSMs) can perform
complex analogy tasks by learning vector representations
for words from their context in a large corpus of text [9], a
more global view that opposes the feature-level focus seen
in visual DNNs. We propose that a similar method of learn-
ing from context is possible in pixel-based algorithms.

In naturalistic scenarios, objects have meaningful co-
occurrence patterns across space and time. For example,
a chair and a lamp are visually distinct but tend to occur
in similar contexts facilitating their categorisation into the
broader concept of living room furniture. While common
scene datasets such as COCO [7] better account for spa-
tial co-occurrences, no image dataset properly accounts for
the temporal associations of objects that would be present
in a naturalistic setting. We tested whether these temporal
co-occurrences could be used to train a self-supervised net-
work and, importantly, whether the information present in
these co-occurrences would lead to a more semantic repre-
sentation.

2. Approach
Our experiment uses images taken from naturalistic

movies to train CMC [14], a self-supervised network. We
prioritise a self-supervised approach given its more cogni-
tively plausible learning mechanism as it does not rely on a
large number of labels. The contrastive task itself builds a
representation that is useful for object recognition by dis-
criminating between observed data and simulated noise,
thereby maximising mutual information between two im-
ages [5].

Video data are very rich, and a notable jump in unsu-
pervised learning performance was observed when their se-
quential information was incorporated into training meth-
ods [15]. We use pairs of still movie frames which are sepa-
rated by a fixed lag, but we do not use perceptual video data
such as motion or optical flow. This preserves the task as
one of image-based representation learning, but simply in-
troduces a new level of information in the temporal relations
between images.

The idea of temporal coherence has previously been used
as a training signal for deep learning [4, 10]. This describes
how neighbouring frames in a video are likely to be sim-
ilar, and can be used to learn features which are invariant
to slight shifts in the inputs over time [16]. We build upon
this but explore the presence of a much slower type of as-
sociation: the long-range co-occurrence patterns of objects
in the visual environment and the potential semantic struc-
ture that could emerge from such patterns. In fact, we sus-
pect that the temporal coherence of perceptual features at
shorter timescales will be too high to reveal the high-level
associative structure, as perceptual similarity will dominate
over more global co-occurrence patterns.

We hypothesise that CMC will be able to learn seman-
tic structure by predicting an image which is related by a
lagged interval. This is similar to the temporal prediction
idea described in Contrastive Predictive Coding (CPC) [12]
which inspired the network used here. However, we do not
give the network sequential information of patches from
an image, instead leveraging the long-range associations
in a naturalistic dataset. Our hypothesis is partly inspired
by text-based DSM models such as word2vec which learn
word meaning from context in a large corpus of text [9]. In-
stead, we ask if object meaning can be learned from visual
context across time. Despite its considerations of temporal
data, we chose not to use CPC but rather its more malleable
successor, as CMC is inspired by cross view representation
learning in humans and is very flexible with regards to its
input views or modalities.

3. Dataset description
A key hypothesis of this work is that the semantic qual-

ity of CMC’s representations can be improved by train-
ing on naturalistic images with meaningful temporal co-
occurrence patterns that would appear in the real world. We
therefore needed to diverge from training on important but
highly-curated computer vision datasets such as ImageNet.
We constructed a new dataset using feature length films as
a proxy for the real-world environment. One might expect,
in an imperfect analogy, that a pre-verbal infant experiences
its visual world in snippets of contexts similar to those por-
trayed in movies with realist genres. Of course, using films
is not a perfect model for the world but it is certainly more
appropriate for our purposes than ImageNet. Note that ef-
forts to provide datasets which are more ecologically valid
as well as being suitable for large-scale deep learning have
been shown to lead to improved computer vision models of
human vision [8].

158.4 hr of video were chosen whose worlds were
deemed to have naturalistic visual scenarios (e.g. Bridget
Jones Diary, 2001 or The Social Network, 2010). A unique
image dataset was created from the movies by taking a still
image every 1 sec, giving 572,949 naturalistic images. Im-
portantly, the temporal structure of the videos was preserved
in their sequence such that two images separated by a spec-
ified time lag were related in a manner that would hold
meaning in the natural world.

3.1. Movie dataset regression analysis

We aimed to use the co-occurrence patterns of objects
in these images to train a DNN on a contrastive learning
task. Thus, the presence of such patterns and the structure
of the object relationships within the movie dataset were
first examined.

Every 200 ms of video from the 158.4 hr of video was
automatically tagged using Amazon’s Rekognition service.
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Figure 1. Temporal co-occurrence correlations of objects persist for an extended period of up to 40 min. In contrast, the perceptual similarity
of inputs decrease rapidly within 20 sec. This difference in timescales presents as a potential signal for self-supervision. (A) R2 score of
the autocorrelation of objects in the movie dataset vs. lag distance (Section 3.1), indicative of temporal associations. (B) The pixel wise -
RMS difference of two movie images over increasing lag distance. The negative RMS similarity is plotted for ease of comparison to (A).

The labels were used to quantify object co-occurrences
across an increasing lag distance, thereby analysing whether
objects that occurred closer together in time were more
strongly associated. Note that these labels were not used in
subsequent deep learning experiments, but simply to exam-
ine the structure in the dataset. To simplify the computation,
the 150 most frequently occurring labels in the movie im-
ages were calculated and a 2,851,272x150 matrix was con-
structed with each row representing a 200 ms movie frame
and each column an object. A binary encoding indicated the
presence or absence of an object at a timepoint.

Using an autoregressive ridge regression model (α=1.0),
the probability of appearance of the 150 objects at t0 was
predicted from the set of objects present at a lagged interval
earlier (tlag). Across models, this interval ranged from 1 lag
of 200 ms to an increasing lag distance (∆t = tlag–t0) of up to
1 hr. The coefficient of determination (R2 score) of the ridge
model was plot over an increasing lag distance (Fig. 1A).
It was expected that object associations would be stronger
at shorter lag distances, illustrated by a stronger model fit
and that this would decrease as the time between two object
occurrences was increased. This would be explained by the
fact that, at longer ∆t, objects would appear in quite differ-
ent contexts or environments which would lead to weaker
correlations.

It was found that object associations persisted for much
longer than was expected, decreasing approximately lin-
early as ∆t increased to ˜40 minutes. This long window of
temporal association for correlated objects was initially sur-
prising. However, it likely reflects that in the movies, as in

life, the visual context or scene will persist for an extended
period of time as one lingers in the same place or situation.
As discussed in Section 2, at low values for ∆t the temporal
coherence of nearby frames can provide a useful signal for
unsupervised training of object decoding networks [10, 4]
but this purely perceptual cue is exactly the type of signal
we aimed to reach beyond. We hypothesised that the strong
perceptual similarity of two images at low ∆t would dom-
inate the learning signal and preclude CMC from building
representations with more semantic meaning.

To quantify the change in perceptual similarity of images
over time, the mean pixel wise root mean square (RMS) dif-
ference of two images was calculated over a range of values
for ∆t (n=1000 images per lag). It was found that percep-
tual similarity decreased much more rapidly than object as-
sociations, reaching a minimum within the first 20 seconds
(Fig. 1B). This difference in timescales between perceptual
and semantic similarity in the movie dataset indeed provides
a signal that can be leveraged for self-supervised learning.

Finally, the nature of the object associations found from
the autocorrelation analysis were examined. Hierarchical
clustering with Ward linkage was performed on the pair-
wise matrix of object regression coefficients. The emergent
clusters were semantically interpretable and could be man-
ually assigned categorical labels such as furniture, clothing
or electronics; objects belonging to the same broad, super-
ordinate category such as chair and closet, were more corre-
lated across time. Given this, we went on to test if training
CMC on the signal illustrated in Fig. 1 would enable these
semantic clusters to be captured in its representations.
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Figure 2. Coding of superordinate category in each training regime, across all AlexNet layers. Correlation was calculated using the Mantel
test with Pearson correlation. An intermediate lag distance of 60 s best captured superordinate level categorisation. * denotes significant
correlation (p <0.05, Bonferroni corrected across 7 AlexNet layers).

4. Method
Contrastive Multiview Coding (CMC) proposed by Tian

et al. [14] is inspired by the brain’s view-invariant represen-
tation encoding as researched in cognitive science and neu-
roscience. It leverages co-occurrence patterns across multi-
ple views of data similar to the approach described by Oord,
Li and Vinyals in [12], allowing mutual information to be
learned across modalities or viewpoints. Noise-Contrastive
Estimation (NCE) loss [5] is calculated in the latent space.
CMC offers great flexibility and cognitive plausibility in its
modality or viewpoints via choice of its encoding network
and definition of auxiliary task. We introduce Semantic-
CMC, trained on our naturalistic movie dataset, and explore
how this new task affects the quality of concepts in CMC’s
learned representations. Weights from a variety of training
regimes with CMC on an AlexNet architecture were exam-
ined using Representational Similarity Analysis (RSA) [6].

4.1. Training CMC on naturalistic images

A total of eight CMC training regimes were analysed.
First, we used the high-performing weights published by
Tian et al. for CMC-AlexNet trained on a purely perceptual
luminance vs. chrominance auxiliary task ({L,ab}). We hy-
pothesised that, although capable of reaching 42.6% top-1
accuracy on the 1000-way ImageNet classification transfer
learning task [14], the relational structure of these represen-
tations may be lacking in semantic similarity structure due
to its reliance on solely perceptual cues.

As a control for our new dataset, we trained CMC using
the {L,ab} auxiliary task on the movie images. This reached
32.38% top-1 and 54.3% top-5 accuracy on the ImageNet

classification transfer learning; an interesting display of the
utility of this self-supervised framework for successful ob-
ject decoding without relying on training with the highly-
curated ImageNet. Two further baseline trainings were ex-
amined by initialising AlexNet with random weights and
with supervised weights loaded from PyTorch.

Next, CMC was trained on our SemanticCMC task with
the movie dataset. Using one full-sized AlexNet as the
encoding network, two images which were separated by a
specified time lag (∆t) were loaded and passed through the
same encoder. This contrasts to the {L,ab} task in which
one image was split across its channels and passed through
half of an AlexNet encoder [17]. Contrastive loss was calcu-
lated in the latent space to identify the positive pair (i.e. the
two images connected by ∆t) from other randomly selected
negative samples. SemanticCMC was implemented as a
finetuning procedure on top of the published weights from
[14], motivated by initial experimentation and the fact that
semantic associations would likely be learned better having
first found useful visual features for basic level recognition.

SemanticCMC was run on a range of values for ∆t (1
sec, 10 sec, 60 sec, 5 min) chosen to reflect intervals at
which object associations would be high, but perceptual
similarity is decreasing (Fig. 1). Interestingly, as ∆t in-
creased, the value to which loss converged increased (1
s loss, 6.20; 10 s loss, 9.29; 60 s loss, 10.97; 5 min
loss, 11.29) giving a first indication that there was dif-
ferent information to be learned from temporal signals in
the movies, depending on the magnitude of ∆t. For com-
parison to the transfer learning capabilities of the {L,ab}
trained networks, ImageNet validation was used to test
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SemanticCMC-60sec, resulting in extremely poor valida-
tion accuracy (1.89% top-1, 5.77% top-5). Despite this
poor classification performance, we went on to test whether
the representational structure of SemanticCMC was in fact
meaningful, and how it compared to the better performing
networks.

4.2. Implementation details

With the exception of the mantel tests described in Sec-
tion 4.3 which were run using the ‘vegan’ package in R, all
analyses were coded in Python 3.7 using PyTorch 1.4.0 with
CUDA v10.2, and run on RTX 6000 GPUs each with 24
GB in a Lambda quad workstation with 28 CPU cores and
128 GB of RAM. Pretraining with the movie image dataset
on the {L,ab} task (Section 4.1) ran to convergence at 200
epochs with a batch size of 128 and a learning rate of 0.03
with decay by 0.1 at epochs 120 and 160 using a SGD opti-
miser with 0.9 momentum. As originally described by Tian
et al. [14] the encoder was a SplitBrain AlexNet architec-
ture. Batch normalisation was used and images were trans-
formed into the {L,ab} space with random resized crops and
random horizontal flipping. Linear decoding was performed
on top of AlexNet convolutional layer 5 for 60 epochs us-
ing an SGD optimiser with an initial learning rate of 0.1 and
decay by 0.2 at epochs 30, 40 and 50.

Temporal training (Section 4.1) was performed using one
full-sized AlexNet as the encoder network. AlexNet was
initialised with the published weights for CMC, as trained
by the {L,ab}-ImageNet task and then finetuned on our
SemanticCMC objective. We tested whether training the
network from scratch on SemanticCMC was worthwhile,
but found that the time expense did not justify the result.
Moreover, semantic analyses (as in Section 4.3) revealed
that when training from scratch, coding of semantic rela-
tions was not as strong as with the fine tuning procedure
(although the trend in the results reported below persisted).
This led us to the conclusion that prior knowledge of object
features is a useful basis for learning semantic structure, and
motivated our choice of finetuning procedure.

To prevent the network from cheating its learning based
only on the colour histogram of the images, SimCLR the
colour distortion method described in Chen et al. [3] was
used instead of an Lab transform, as well as random resized
crops and random horizontal flipping. Temporal finetuning
was run for 80 epochs, with a batch size of 128 and a learn-
ing rate of 0.03 with decay by 0.1 at epochs 30, 50 and 70.
Batch normalisation was used, and a SGD optimiser with
momentum of 0.9. The differences in loss values reported
in Section 4.1 were only observed when inputs were trans-
formed with the colour distortion method described in [3].
This suggests that without colour distortion CMC was using
an alternative perceptual cue, the colour histogram.

4.3. Representational similarity analysis

RSA characterises a representation within a system by
the distance matrix of the response patterns elicited by a
set of stimuli. A two dimensional representational dis-
similarity matrix (RDM) is constructed from the pairwise
distances between patterns of activations in vector space.
This gives insight into how similar or dissimilar objects are
’thought’ to be by the system; there is a greater distance be-
tween two unrelated object vectors and a shorter distance
between two similar objects. RDMs were constructed from
AlexNet loaded with the learned weights from the eight
training regimes described in Section 4.1 (random weights,
supervised, {L,ab} task as published by [14], {L,ab} on the
movie dataset, SemanticCMC with a ∆t of 1 sec, 10 sec, 60
sec and 5 min).

As an initial experiment, network activations were cal-
culated in response to the ImageNet categories overlapping
with the 150 frequent labels used in the regression analy-
sis described in Section 3.1 (n=25 classes). 50 randomly
sampled ImageNet exemplars per class were passed through
each frozen weights network and the pairwise distances be-
tween each class’s activations were structured into a matrix.
These activation RDMs were correlated to a binary category
model matrix that coded for which pairs of objects occurred
in the same category cluster returned by the hierarchical
clustering; e.g. wine and table were clustered together, and
so they received a value of 1 while table and hair were not
clustered so were coded for with a 0. This binary matrix
therefore modelled a scenario entirely explained by the su-
perordinate clusters derived from the label regression anal-
ysis. Using a Mantel test to correlate the activation RDMs
to the superordinate category model, it was found that Se-
manticCMC–60sec best captured semantic content, while
networks trained on a purely perceptual task did not signif-
icantly correlate to the model RDM (Fig. 2). Convolutional
layer 5 was most correlated to the semantic model.

Although this analysis was indicative that semantic con-
tent could be learned from SemanticCMC training at an ap-
propriate ∆t, it was flawed in that it used a small number
of ImageNet categories (25); it made use of an ill-defined
semantic measure (the clustering results); and it was based
on a regression that only examined the 150 most frequent
objects in the movie dataset. Thus, we extended the evalua-
tion to construct RDMs from the mean activation to 256 ran-
domly selected ImageNet classes (n=150 images per class).
The pairwise distances between each class’s activations in
the frozen weights networks were calculated and stored in a
256x256 RDM.

To further improve the evaluation, the quantification of
semantic content was improved using the WordNet Lea-
cock Chodorow (LCH) similarity scores for every pair of
the ImageNet classes tested. LCH quantifies the shortest
distance between two classes in the WordNet hierarchy tak-
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Figure 3. Results of Mantel test and partial Mantel test (Section 4.3, Pearson correlation, 999 permutations). All results show correlation
of the activation RDM for AlexNet Convolutional Layer 5 to the LCH RDM. Orange bars illustrate partial Mantel tests, controlling for
perceptual cues using activations from the randomly initiated network. It was shown that only SemanticCMC at a sufficient temporal
distance acquired additional semantic knowledge. (*** denotes significant correlation p <0.001).

ing into account the depth of taxonomy, making it a suitable
measure for quantifying semantic similarity. A 256x256
pairwise semantic LCH model was constructed from the
WordNet similarity scores. Using a Mantel test with Pear-
son’s product moment correlation (number of permutations
= 999) the relationship between LCH and network activa-
tions were found.

5. Results and discussion

As previously reported, ImageNet training using the
{L,ab} task for CMC with an AlexNet base architecture is

capable of high object-level decoding accuracy (42.6% top-
1) [14]. Note that this result can be improved with ResNet
architectures. We have shown that CMC, when used with
a completely different dataset generated from naturalistic
feature-length movies, can still achieve moderate classifica-
tion performance at 32.38% top-1. This result in itself is
an interesting display of the utility of self-supervised net-
works for learning on less curated, computer vision specific
resources. However, the aim of this paper is to explore the
representational and semantic quality of the DNNs’ learned
embeddings.
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5.1. Associations at an intermediate lag distance
capture semantic information

Initial results shown in Fig. 2 revealed that a DNN
trained to maximise mutual information between two natu-
ralistic images separated by an intermediate lag distance of
60 sec was better able to capture relational semantic struc-
ture. A purely perceptual task did not succeed in learning
this high-level information. Similarly, when the distance
between two images was either too long or too short, se-
mantic learning was attenuated. This indicates that there is
an optimal value for the temporal distance between objects
that can be leveraged for learning high-level object associ-
ations. Subsequent RSA evaluations develop and improve
upon these initial findings.

5.2. Training on temporal patterns in naturalistic
images forms more semantically relevant rep-
resentations

The results of the RSA evaluation described in Section
4.3 are illustrated in Fig. 3. The extent to which each
network’s representations captured semantic information is
quantified by the magnitude of the Pearson product moment
correlation with the LCH model.

It was found that all networks except for one were sig-
nificantly correlated to the semantic model (Fig. 3, blue
bars, p<0.001). Each mode of training - be it randomly ini-
tiated, supervised, perceptual CMC or SemanticCMC - did
capture a representation that correlated with the semantic
relations described by the LCH model. SemanticCMC-1sec
was the exception, explained by the fact that it was probable
for two movie images with ∆t = 1 sec to be almost exactly
the same. This means that there was very little signal from
which to learn meaningful structure with the SemanticCMC
auxiliary task; images were essentially identical and there-
fore there was little to gain by contrasting them.

We found that the RDM of the random-weights network
correlated with the LCH RDM to some degree. This ran-
domly initiated network could only concern perceptual fea-
tures, extracted from the convolutional architecture of the
AlexNet encoder that was used in all networks tested. This
suggests that semantically related objects hold superficial
visually similarities. To measure the extra semantic infor-
mation learned by each network, we controlled for percep-
tual similarity using a partial Mantel test. This measured the
correlation between a network’s RDM and the LCH RDM,
while partialling out the random-weights pairwise activa-
tion patterns.

When controlling for perceptual similarity in this man-
ner, the results were vastly different. We found that the only
networks that preserved their significant correlation to the
LCH semantic model were those trained on SemanticCMC
at a sufficient value for ∆t (10 sec, 60 sec and 5 min), with
an intermediate lag distance once again being preferable for

capturing semantic structure (Fig. 3, orange bars, p<0.001).
It can be inferred that at short distances in a naturalistic
visual dataset, temporal co-occurrence patterns of objects
are not informative for forming an accurate representation
of semantics. Similarly, at too long a distance the correla-
tions of objects begin to weaken and learning is not as ef-
fective. These results therefore indicate that at intermediate
temporal windows the co-occurrences of objects provide a
useful signal for self-supervised learning of visual represen-
tations, leading to more semantically meaningful concepts
being embedded into the networks’ representations.

5.3. High object-level decoding performance does
not imply that meaning has been captured

As displayed in Table 1, high top-1 accuracy on an Ima-
geNet transfer learning classification task was not indicative
of high correlation to a semantic model. Representations
formed by CMC trained on the perceptual task were indeed
useful for classification, but were not correlated with the
semantic model once perceptual similarity had been con-
trolled for. In contrast, SemanticCMC-60sec was not capa-
ble of ImageNet classification, but was most strongly corre-
lated to the semantic model even when perceptual similarity
had been controlled.

This result highlights a key oversight when interpreting
most evaluations of computer vision models. Often, success
is narrowly defined as percentage increases in performance
benchmarks. The innovation presented by researchers in
the computer vision community is unparalleled, yet there
is little effort to understand why or how a DNN is behav-
ing the way it is. While this ”is it working” approach has
merits for myriad applications in engineering or commer-
cial practice, a deeper understanding of the models being
published will enable greater success in future innovation.
The efficacy of having correct relational structure in unsu-
pervised systems has been shown [13], and huge progress
has been made in natural language processing with models
that accurately capture semantic biases [2]. While this goal
may not be applicable to every computer vision problem,
one can envision a future where such models must better
capture concepts’ meaning to perform robustly in the real
world.

5.4. Limitations and future direction

There are notable limitations to the work presented here.
We have only tested one self-supervised system, CMC. This
was motivated by CMC’s inspiration from cognitive sci-
ence and its learning across multiple viewpoints of a stim-
ulus; it was natural to investigate learning from temporal
co-occurrence patterns by taking two viewpoints as two im-
ages separated by a time lag. Further work will extend these
findings to other self-supervised frameworks as well as test-
ing encoder networks other than AlexNet. Furthermore, Se-
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Network
(AlexNet)

Task and Dataset Top-1 Accuracy Semantic
Correlation
Mantel Test Partial Mantel

CMC
L vs. ab - ImageNet 42.60% 0.1196 (***) -0.02184 (n.s.)

CMC
L vs. ab - Movies 32.38% 0.1403 (***) 0.0001595 (n.s.)

SemanticCMC-60s
t0 vs. tlag - Movies 1.89% 0.2668 (***) 0.2195(***)

Table 1. Classification accuracy vs. semantic content. Mantel results report Pearson’s product moment correlations to the LCH semantic
matrix. Partial Mantel tests controlled for the randomly initialised network activations i.e. perceptual content. It was found that high
object-level decoding accuracy did not indicate that semantic content was captured by the network.

manticCMC was implemented as a finetuning procedure on
top of pretrained weights. Although this choice was well
motivated (Section 4.2) a system that concurrently learns to
recognise and relate objects would be preferable. Finally,
although improving ImageNet classification accuracy was
not our aim, a system that is capable of capturing semantic
concepts as well as performing successful transfer learning
to state-of-the-art benchmarks is a worthy big picture goal.
It will be useful and worthwhile to apply the present analy-
ses to more SOTA computer vision networks with the aim of
finding a solution to both the problem of high classification
and semantically meaningful representations. Additionally,
it will be interesting to test if the improved semantic con-
cepts captured by SemanticCMC better correlate to human
behavioural and neural data.

6. Conclusion

The results presented here show that, at intermediate in-
tervals, the temporal co-occurrence patterns within a nat-
uralistic movie dataset provide a signal for self-supervised
learning of more semantic visual representations. This re-
sult was not indicated by better object-level decoding per-
formance, highlighting a key pitfall in relying solely on
classification benchmarks for the evaluation of computer vi-
sion models. By doing so, we fail to account for the qual-
ity of concepts within the learned representations. Further-
more, we have shown that a naturalistic dataset which was
not expertly designed for training purposes can be used in
self-supervised learning scenarios. These results provide
preliminary stepping stones towards more robust, natural-
istic and human-like computer vision.
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