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158.4 hr of live action movies with naturalistic visual worlds.

® Automatically generated labels at sampling interval of 200 ms
giving 2,851,272 sets of labels.

® Images taken every 1 sec, giving 572,949 images with preserved

Overarching goal temporal relations.
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® When controlling for perceptual content, only SemanticCMC trained
over a sufficient distance in time captured LCH semantics.
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