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Much of what we know is learned from what we see. Our early experience is awash with 

sensory input; before we can even speak we are observing and learning from the world 

around us. Focusing on the emergence of semantic knowledge from visual experience, I will 

review where the fields of cognitive neuroscience, psychology and computer vision stand in 

terms of accounting for our robust visual understanding. Deep learning networks continue to 

excel as models for human vision, but are they truly accounting for the wealth of semantic 

information present in our neural representations? The human vision literature is expansive, 

but are we missing key insights from naturalistic, contextualised experiments that will 

delineate how to build robust semantic knowledge? Finally, I argue that progress can be made 

in both computer and biological vision research by looking for inspiration in the most efficient 

learning systems that we know of: the human infant. Through an exploration of the downfalls 

of current vision research and computational modelling I discuss how infant-inspired machine 

learning just might improve our current best models of the brain and, in turn, enlighten our 

knowledge of how abstract semantic knowledge is built from the physical world. 

 

How does a system learn to know what it sees? 

 

The question of semantic knowledge could be approached from many angles, but often is 

formalised in psychological research as categorisation behaviour or concept formation. This 

goes hand-in-hand with knowledge representation in computer vision, where (sometimes to 

a fault) successful classification performance is taken as confirmation that a system has 

successfully learned what things are. This can be further distilled down to the behaviour of 

object recognition: the ability to attach a label to a visual percept. The site of object 

recognition in human visual cortex is on the ventral occipitotemporal pathway known as the 

ventral stream. This ‘what’ pathway of vision is tasked with recognising objects in space and 

is separate to the ‘where’ dorsal stream which instead focuses on tasks related to motion or 

vision for action (Goodale & Milner, 1992). Structured along a posterior to anterior gradient, 

earlier regions in this hierarchical ventral pathway such as V1 and V2 respond to simpler 



critical features than more anterior regions (V4, IT) (Kobatake & Tanaka, 1994), and invariance 

to transformations in the input image increases along the pathway to enable robust 

recognition performance (Rust & DiCarlo, 2010). The complexity of the information also 

increases from posterior to anterior. Early visual cortex (EVC) processes features like 

luminance or orientation and more abstract features are processed later in the pathway with 

anterior regions such as inferotemporal cortex (IT) in macaques and lateral or ventral 

occipitotemporal cortex (LOT/VOT) in humans being the site of more high-level, semantic 

representations for objects (Orban et al., 2004; Tanaka, 1996). Taken together, this 

hierarchical pathway is confirmed to be the cortical site of extracting meaningful 

representations from an object’s visual input. 

 

Object recognition is an equally relevant task in computer vision systems. Inspired by the 

ventral stream’s hierarchical architecture as well as the pooling from complex to simple 

receptive field sizes identified by seminal visual cortex experiments (Hubel & Wiesel, 1962), 

the early Neocognitron model (Fukushima & Miyake, 1982) first introduced the idea of brain-

inspired computer vision. However, it wasn’t until 2012 when the field experienced a 

revolution with the introduction of AlexNet (Krizhevsky et al., 2012), a deep convolutional 

neural network (CNN) that was capable of state-of-the-art performance on a common 

computer vision benchmark: the ImageNet Large Scale Visual Recognition Challenge 

(Russakovsky et al., 2015). Such networks have even gone on to outperform humans at object 

recognition and labelling tasks (He et al., 2015). Deep learning was revolutionary for the field, 

and the CNNs that facilitated innovative leaps within the computer vision community 

emerged to be more than simply inspired by the brain; they are in fact predictive of the very 

neural structures from which they were inspired.  

 

Many influential studies have now established firm links between human neuroimaging data 

and CNNs. Within the past decade, new methods such as representational similarity analysis 

(RSA) (Kriegeskorte et al., 2008) have enabled valid comparisons across systems as disparate 

as the brain and computers. With the advent of CNNs, computational models for neural data 

were now being optimised on the task of object recognition rather than being directly 

constrained by physiological recordings. This shift towards a focus on modelling goal-driven 

behaviour lead Yamins and colleagues to describe the first quantitatively accurate image 



computable model of spiking responses in IT cortex (Yamins et al., 2014), following up with a 

study showing that the then emerging deep neural networks rivalled the representational 

performance of IT in a visual recognition task (Cadieu et al., 2014). Further elegant studies 

went on to affirm the power of these CNNs in modelling neural responses (Cichy et al., 2016; 

Eickenberg et al., 2017; Khaligh-Razavi & Kriegeskorte, 2014) and deep learning is now well-

established as a leading method for constructing models within cognitive computational 

neuroscience (Storrs & Kriegeskorte, 2019).  

 

A recent paper replicated the findings of previous studies, confirming the links between the 

brain and CNNs, but the authors went further in testing not only if the CNNs were predictive 

of neural responses but how well they were predicting the brain (Xu & Vaziri-Pashkam, 2021). 

New fMRI data was collected with improved signal to noise, and 14 popular CNNs were tested 

which had been pretrained on the standard ImageNet dataset (Deng et al., 2009). Once again, 

RSA was employed to show the impressive mapping of lower neural network layers to earlier 

regions in the ventral stream as was shown by Güçlü and van Gerven (2015), illustrating a 

definite correspondence between the brain and the models. However, by calculating the 

noise ceiling on the fMRI data Xu and Vaziri-Pashkam found that while higher layers of the 

networks were predictive of brain responses in regions such as LOT and VOT, the quality of 

the prediction was poor with the highest amount of explainable variance being 60%. In 

contrast, many of the CNNs tested could fully capture the RDM variance of lower visual areas 

(e.g. V1-V4). This finding raises an interesting limitation of the deep learning models. It 

appears that their learned representations are missing something in the high-level 

information that would be present in semantic, anterior visual cortex. Of course there are 

numerous differences between the CNN models and the brain that could explain the 

dissimilarities, but perhaps this particular shortcoming is a surmountable issue that lies in the 

way the models learn. While anterior visual regions do receive top-down influence from 

frontal cortex (Bar et al., 2006), the input is largely fed forward from earlier visual regions. 

Perhaps there is sufficient structure in naturalistic perceptual input that enables learning of 

more abstract representations, and there is something more fundamental missing from the 

images input to CNNs that precludes learning of the more high-level information that is 

widespread in naturalistic experience. 

 



Downfalls of CNNs as models of anterior visual cortex 

 

When we consider the manner in which these neural network models are trained, it’s not 

surprising that they fail to fully capture representations in the brain’s semantic loci. All of the 

networks found to be predictive of neural data in the above studies were trained with a 

supervised machine learning approach using millions of images and their associated labels. 

This does not align with how humans learn to recognise. We spend our early days observing 

and interacting with the world around us, with very little in the way of supervision except for 

when our caregivers explicitly name things for us, which (in comparison to experience as a 

whole) is not very often. Human learning is more akin to unsupervised or semi-supervised 

machine learning methods (Zaadnoordijk et al., 2020), and efforts to follow an infant-inspired 

self-supervised learning curriculum have been shown to improve predictions of macaque 

neural data (Zhuang et al., 2019). There are arguments from deep learning researchers that 

taking a more biologically-plausible approach will reap benefits for their engineering goals 

(Sinz et al., 2019). The real-life training dataset of our visual environment houses much richer 

information that provide cues to guide learning of semantic knowledge. 

 

A current limitation of CNNs that prevents them from capturing this high-level information is 

a bias towards local features and an inability to capture global relational structure. In a study 

that constructed a CNN using a method that ignores spatial relations between the parts of 

images by considering an image a simple “bag of features”, it was shown that CNNs are robust 

to large transformations of images that would otherwise greatly impair human recognition 

(Brendel & Bethge, 2019). This more traditional approach to learning did not preclude the 

network from reaching high ImageNet classification performance, operating at an accuracy 

comparable to state-of-the-art models at the time. The result illustrates that CNNs do not use 

large-scale spatial regularities or global shape integration of the input images to form 

representations, but instead focus on regularities at the scale of individual features. While 

Brendel and Bethge’s network was explicitly designed to be a feature-focused model, its still-

strong performance highlights that CNNs with high classification accuracy don’t necessarily 

rely on visual cues at the whole image level. In contrast, human scene recognition can proceed 

rapidly by focusing on the global image features that provide a summary of the spatial layout 

of the visual input in a low dimensional code, allowing a rapid “gist” of the scene to be 



understood and thereby constrain the subsequent local feature analysis for more specific 

object recognition (Oliva & Torralba, 2006). In this way, the scene as a whole is first perceived 

as a single entity and then the local details are processed at a finer scale. This disparity in the 

visual processing between computational and neural systems is further exemplified by the 

sensitivity of deep neural networks to adversarial attack. Even a single pixel can fool the 

network into misclassifying, when such a difference is virtually undetectable by the human 

eye (Yuan et al., 2019). Clearly, the over-reliance of these models on local information is 

detrimental under certain conditions, limiting their capacity to grasp an overall understanding 

of the patterns and regularities that make an image what it is.  

 

Given that this difference in processing focus seems to be so pronounced, it is curious that 

the CNN models are still so predictive of brain responses. Recall that the models are 

significantly predicting fMRI data from visual regions across the posterior to anterior 

hierarchy, but in semantic regions the prediction is simply incomplete (Xu & Vaziri-Pashkam, 

2021). What is it about the lack of global information in an image that limits the models’ ability 

to fully account for the concepts in high-level visual regions, but does not significantly impair 

their ability to recognise objects? A huge difference between the two systems is the nature 

of their image inputs. Deep learning networks are trained on highly-curated still images 

whereas visual experience is defined by more slowly-evolving inputs with consistent 

spatiotemporal regularities. Perhaps the patterns and distributional properties of naturalistic 

experience is informative for object semantics, and by incorporating this into CNN learning 

we may build more holistic models of human visual regions. 

 

Meaningful relational structure emerges from naturalistic co-occurrence statistics  

 

Elements of visual input hold informative statistical regularities that guide representation 

learning. In a recent review, Hafri and Firestone (2021) inadvertently highlighted the exact 

local-feature bias pitfall of CNN models stating “the world is more than a bag of objects: it 

contains not only isolated entities and features (red apples, glass bowls) but also relations 

between them (red apples in glass bowls). These relations are rich, abstract, categorical and 

structured” (Hafri & Firestone, 2021). Indeed, they highlight in this review how the 

informative relations between objects in space and across wider visual input are actually 



perceived quite automatically by the visual system to result in representations that contain 

abstract relational information. While typical computer vision CNNs are guilty of the local bias, 

the idea of extracting meaning from surrounding context does exist in the machine learning 

literature. Distributional semantic models from natural language processing (NLP) learn a 

word’s embedding based on its surrounding words in a large text corpus, and can even 

perform interesting analogy tasks (Mikolov et al., 2013) with transformer networks such as 

BERT capable of changing an embedding for a word given its context (Devlin et al., 2019). The 

latest-and-greatest in artificial intelligence is GPT-3, generating significant buzz for its 

impressive ability to perform seemingly complex writing tasks (Floridi & Chiriatti, 2020). Each 

of these models has a unique technical profile but they all have one thing in common in that 

they attempt to learn what a word means by learning how it relates to other things in context. 

Perhaps the same principle can be applied to visual models to improve semantic 

understanding. 

 

Although these NLP models don’t have quite the same reach into cognitive science as CNNs 

do for vision, there are papers that connect the two in an attempt to generate more 

semantically meaningful machine learning models. It has been shown that incorporating 

typical distributional semantic models with pixel-based CNNs can provide better prediction of 

neural responses, with later semantic layers being more correlated to anterior neural 

responses (Devereux et al., 2018). Many studies investigate multimodal computational 

models and reveal significant correlations to the brain (Anderson et al., 2013; Bruni et al., 

2014; Derby et al., 2018; Rotaru & Vigliocco, 2020). These are all exciting efforts and there is 

a theoretical case for the different models – pixel-based and text-based – being analogous to 

multimodal processing within the human brain. However, each model referenced above 

requires explicit coding of the semantic element, with none being able to extract meaning 

from a purely pixel-based input. As reviewed by Hafri and Firestone (2021), there is mounting 

evidence for relations being rapidly processed by the perceptual system and not only 

something that requires our careful and slow reasoning. Much like how a word appears in a 

sentence, they suggest that objects appear in their contexts with useful statistical 

information. 

 



Taking the spatial configuration of objects as an example, it has been shown through 

continuous flash suppression that objects in configurations that would typically occur in the 

world access awareness more quickly than when the same objects are shown in unexpected 

spatial layouts (Stein et al., 2015). Furthermore, recent EEG analyses reveal that expected 

spatial configurations of objects facilitate the extraction of contextual associations between 

objects that tend to co-occur, with a larger signal arising in occipitotemporal cortex when 

associated objects are typically positioned (Quek & Peelen, 2020). This importance on general 

spatial configuration ties in with the aforementioned gist perception, put forward by Oliva & 

Torralba (2006). The global statistics of a scene are crucial for human understanding of the 

input’s general meaning, as expected spatiotemporal configurations appear to confer an 

ability to rapidly understand what is being perceived. Through sensitivity to the statistical co-

occurrence structure beyond just that at the feature level, a more holistic and semantic 

understanding of the scene can be learned. This extends to the relationship between objects 

in a scene and the context itself, with Palmer showing in early psychological experiments that 

the successful recognition of an object is facilitated having first seen its congruent context 

(Palmer, 1975) and Biederman and colleagues showing through behavioural experiments that 

semantic relations between entities in a scene are rapidly accessed to facilitate identification 

(Biederman et al., 1982). Clearly, there are additional benefits for recognition once things are 

placed in their typical settings. This idea is reviewed well by Willems & V. Peelen (2021) who 

also point out that perceptual research in a contextualised setting is scant, and something to 

be developed in coming years.  

 

A few neuroimaging experiments follow this line of thinking and investigate the extent to 

which constituent objects of a scene are encoded in neural representations. Using an 

encoding model based on an NLP method called Latent Dirichlet Allocation it was shown that 

by applying this algorithm to the frequency counts of object labels in a large visual dataset, 

the learned co-occurrence statistics of the scenes were predictive of typical anterior 

functional regions of interest including retrosplenial cortex (RSC), parahippocampal place 

area (PPA), lateral occipital (LO) and others (Stansbury et al., 2013). The authors claim this as 

quantitative evidence for the findings of Palmer and Biederman and it is interesting that these 

are the exact areas that were not fully explained by the CNNs tested in Xu & Vaziri-Pashkam 

(2021). Furthermore, the encoding model put forward by Stansbury et al. was not significantly 



predictive of earlier visual regions V1 to V4, reiterating the importance of co-occurrence 

statistics for anterior visual responses. Further results show how particular anterior regions 

in the lateral occipital complex use the combination of object representations to form scene 

understanding in an experiment that classifies fMRI responses to scene images from a linear 

combination of object-based predictors (MacEvoy & Epstein, 2011), providing converging 

evidence for the idea that there is something unique to anterior regions in their ability to 

extract statistics that are reflective of the environment. This appears to form the basis of how 

meaningful structure manifests in neural responses. Perhaps the use of more naturalistic 

datasets with typical statistical regularities in CNN training would facilitate learning of 

relational structure and improve their potential as models for the ventral pathway. 

  

Psychological accounts of concepts being structured by co-occurrence statistics 

 

The idea that concepts are emergent from relational or statistical structure is prevalent in 

psychological literature. Eleanor Rosch’s prototype theory takes a probabilistic rather than 

the original definitional approach to defining a concept, such that category membership – a 

common operationalisation of concept formation – is decided by ‘family resemblance’ to a 

typical member of the category (Rosch & Mervis, 1975). According to this theory, probabilistic 

structure at the feature level of category members define membership which, despite falling 

short in explaining the spread of highly variable concept examples (Storms et al., 2000) 

presents an appealing intuition that ties into the above arguments. This is further formalised 

in the Conceptual Structure Account where the internal structure of a concept is defined by 

relations between features and their degree of correlation (Taylor et al., 2007), highlighting 

once again the expansive explanatory power of co-occurrences that exist in naturalistic 

statistics.  

 

Note that traditional views of knowledge representation in the psychological domain consider 

the representation to be an amodal, internal symbol that lies beyond sensory modalities in 

the brain; for example, that the anterior temporal lobe (ATL) is the sole site of semantic 

convergence. However, theories in grounded or embodied cognition state the opposite and 

claim that all representations must involve a sensory component that is re-activated in the 

brain once the knowledge is needed (see Barsalou (2008) for review of this theory). While I 



would argue that an entirely amodal system is unlikely given the first cortical port-of-call for 

any information is sensory areas, at some level a representation must become abstracted to 

something that one would define as a symbol. However, the symbol itself may be reflective 

of the statistics and activation patterns that were present during experience, similar to the 

ideas proposed by Barsalou but not as prescriptive in the need for replay. Lambon-Ralph and 

colleagues present the idea that modal-specific inputs are integrated in their hub-and-spoke 

model of semantic cognition. According to this view, the ATL is an integrator of modality 

specific information which may still house semantic content – to form robust, generalisable 

concepts (Lambon Ralph et al., 2017). While I would argue against the idea of a single site of 

semantic knowledge within the temporal lobes, there is a definite role for ATL in semantic 

cognition as evidenced by the condition of semantic dementia which is marked by highly-

specific atrophy of this region alongside cognitive deficits in recall of semantic knowledge 

(Chen et al., 2020; Czarnecki et al., 2008).  

 

Despite ATL playing a role in semantic convergence and cognition, there are numerous 

statistical regularities in visual input that can guide formation of semantically meaningful 

representations in a purely perceptual manner, often discussed in terms of statistical learning 

(Turk-Browne, 2012). While signatures of statistical learning are present in numerous brain 

areas including medial temporal lobe and frontal cortex, there is evidence for learning from 

concurrent sequences in as early as V1 (Rosenthal et al., 2018) and signals of suppressed 

activation to predictable object pairs are present throughout the ventral stream (Richter et 

al., 2018). Recent work in macaques used a behavioural training paradigm followed by fMRI 

recordings to show that more regularly recurring pairs of objects resulted in different 

processing patterns to random pairs of objects in occipitotemporal cortex and EVC (Vergnieux 

& Vogels, 2020). Indeed, the relevance of statistical patterns in the environment for learning 

concepts is well accounted for, and the idea does find its way into CNN models even if it is at 

too small a scale to learn big-picture relational structure. Turning to the infant literature, we 

can explore how this statistical information is used early in life to facilitate conceptual 

learning, and how this may improve computational models of object recognition. 

 

 

 



Inspiration for better semantic learning from developmental science 

 

Studies of looking time habituation have firmly established that infants are sensitive to the 

statistical regularities of the environment. This has been shown to be a domain general 

learning mechanism that spans modalities (Fiser & Aslin, 2002; Kirkham et al., 2002; Saffran 

et al., 1996). Evidence even exists for statistical learning in as young as new born infants, albeit 

highly constrained by limited cognitive resources (Bulf et al., 2011). While there are 

meaningful spatial regularities within typical CNN inputs, say single ImageNet exemplars, the 

wider context and scene where one may find an object is certainly lacking from traditional 

computer vision datasets. Even in scene-focused MSCOCO (Lin et al., 2014) there is no 

consideration of temporal consistencies, an important contextual cue that has been shown 

to affect recognition in parahippocampal cortex causing two images to be represented as 

more similar when preceded by similar versus different stimuli (Turk-Browne et al., 2012). 

Undoubtedly, the impoverished and highly-curated nature of such datasets (which are 

undeniably beneficial for their designed engineering purposes) can only prevent these models 

from learning more robust, generalisable conceptual structure. While the general goal of 

unsupervised methods is comparable to infant statistical learning on the surface – both find 

patterns in the data that are useful for specific tasks - the two fields remain quite separate. 

This is despite early enthusiasm from influential computational neuroscientist Horace Barlow 

in relating unsupervised visual recognition to connectionist models (Barlow, 1989), and 

subsequent explorations of his theory in behavioural statistical learning paradigms (Fiser & 

Aslin, 2001). We know that infants are sensitive to these patterns, but to expose machine 

learning models to entirely naturalistic experience is unfeasible. However, there is compelling 

evidence that elements of infants’ visual input is tailored in specific ways towards facilitating 

better object representation learning and these may be worthy lines of inquiry to follow in 

computer vision.  

 

Using headcams attached to infants in a naturalistic play setting, Linda Smith and colleagues 

have revealed the interesting ways that young children create their own “training data” in a 

manner that best facilitates learning (Pereira et al., 2014). The authors show that when 

playing with toys and having parents assign labels or names to the objects, those words that 

were successfully learned post-play had a distinct visual signature. Infants manipulated the 



object so that it was centred, taking up a large portion of the visual field and sustained in view 

before and after word naming. These types of manipulations are increasingly common with 

development, and prevalent in results from head cam studies in older toddlers (Yu & Smith, 

2012). This raises an interesting suggestion that infants are creating the types of visual input 

that best enables their learning for assigning labels to objects. This input is starkly different 

to that given to machine learning models. When examining head-cam data from meal times, 

it was shown that despite a typically cluttered visual environment a very small set of objects 

are present much more often; few things in the environment are very common and many 

things are rare with the most frequently encountered objects going on to become earlier 

learned words (Clerkin et al., 2017). In contrast, machine learning models receive huge 

numbers of image examples and learn numerous different types of things from the get-go. As 

argued in Smith & Slone (2017), perhaps building these developmental considerations into 

CNNs may lead to benefits in machine learning. Infants appear to learn completely about a 

few things first which then enables later rapid generalisation to the wider space of knowledge 

from very limited experience; maybe by taking the opposite approach in computer vision 

models we are limiting their potential to form robust, generalisable representations that can 

fully account for anterior visual cortex. 

 

Bambach et al. (2018) develop this fascinating connection between infant-derived views of 

the world and CNN training. Once again using headcam data, including eye tracking and a 

model of foveated vision, the authors show that the views from infant data lead to more 

robust learning and generalisation in the CNN than adult-derived images (Bambach et al., 

2018). This suggests that the subset of data selected by the infants through their self-

generated views of the world through play actually provide more suitable training inputs for 

learning about objects in general. This once again highlights how the data we are currently 

using to train CNNs is impoverished; not only is it highly unnaturalistic in its content and 

distribution of categories, it has also been subject to adult judgements of what is a “good 

image” when really those seen by infants are inherently more instructive to visual learning. 

The clear discrepancies between the types of training data from which humans and CNNs 

learn make obvious why these models are failing to fully capture the explainable variance in 

the semantic visual regions LOT and VOT (Xu & Vaziri-Pashkam, 2021). The highly-curated 



machine learning datasets simply don’t possess the wealth of statistical information to which 

we have access in a naturalistic setting early in our lives.  

 

Bringing better semantic understanding into CNN models 

 

There are some studies developing the idea that visual co-occurrence statistics lead to 

improved semantics in object representations, often by taking the distributional hypothesis 

of NLP algorithms as a starting point. Using latent similarity analysis it was shown that non-

verbal co-occurrences of objects in a visual dataset allow for concepts to be meaningfully 

categorised, a proof of principle that visual perceptual patterns hold merit for constructing 

conceptual representations (Sadeghi et al., 2015). In work that linked this idea to neural data, 

Bonner and Epstein (2020) constructed a word2vec-inspired model called object2vec and 

used this deep learning network to perform voxel-wise encoding as was introduced in 

previous papers (Bonner & Epstein, 2020). They show that the distributional statistics of the 

objects in scenes that are captured by object2vec embeddings are predictive of anterior PPA, 

and that those derived from the text-based word2vec were also predictive of these semantic 

regions. In an unexpected but satisfying result, the authors show that those regions best 

predicted by the object-based model tended to be scene-selective whereas those predicted 

by the language models were object-selective. This indicates that there may be some added 

weight on the distributional statistics between objects in a scene for understanding the 

overall image, as was put forward by previous research (Biederman et al., 1982; Oliva & 

Torralba, 2006; Palmer, 1975). Note that the object2vec model proposed here and the latent 

similarity analysis performed by Sadeghi et al. still use text-based object labels instead of a 

purely pixel-based input. A true account of relations emergent from visual input demands 

efforts to be made from extracting this information from purely visual input, and not being 

reliant on manual annotations.  

 
The relevance of capturing meaningful relations within a perceptual system for forming 

concepts is brought together in elegant modelling work that aligns unsupervised embeddings 

(Roads & Love, 2020). The authors show that the distinct signature of a concept in one system 

(say a visual CNN) is recapitulated in another (a text-based model), such that the idiosyncratic 

signals between the concepts within each can be used to align the two representations, 



forming a more holistic and meaningful representation of knowledge. What’s really key here 

is that the relational structure guides understanding; if everything was perceived as 

equidistant then alignment across systems would not be possible. This makes clear the 

importance of fully capturing the global structure that supervised CNNs are biased against. 

Further interesting results from Roads and Love (2020) show how a system comprised of few 

concepts can be better aligned across modalities by restricting efforts to those words learned 

earlier in life. This is a fascinating finding when taken into consideration with the above work 

by Smith and colleagues that suggests infants and toddlers are creating for themselves better 

training data from which to learn. Are the optimal representations learned by infants, enabled 

by their innate tendency to create the most beneficial inputs, those that best facilitate 

alignment across unimodal systems like in Roads and Love’s modelling work? Moreover, is 

this computational account of semantic learning akin to the hub and spoke theory of semantic 

cognition (Lambon Ralph et al., 2017) whereby important structure is learned in sensory 

cortices and alignment then occurs in ATL? Note that this does not remove the onus on 

perceptual regions to encode meaningful semantics. In fact, it emphasises a need to extract 

meaningful relations from the perceptual input so that robust alignment of concepts can 

occur, as was discussed by Hafri & Firestone (2021). This is only something that can be 

achieved by a system that has been given meaningful inputs, and is sensitive to the co-

occurrence patterns within the data.  

 
Conclusion 
 
Deep learning, and specifically CNNs, hold their weight as models for human vision. However, 

their unnaturalistic learning methods inhibits learning of robust, generalisable and 

semantically meaningful embeddings that fully capture anterior visual cortex responses. To 

overcome this problem, inspiration can be found in infant development in the form of 

unsupervised learning mechanisms, inputs that are tailored for object representation learning 

and naturalistic datasets that preserve important statistical regularities in spatiotemporal co-

occurrences. By implementing and exploring these methods in machine learning, innovative 

progress can be made towards improved computer vision that better models neural 

processes. 
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